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Hybrid Halftoning—A Novel Algorithm for
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Abstract

The rendering quality in halftoning is a critical issu
The quality aspects are more important in some ima
than in others. The quality of skin tone rendering
halftoned images generated by frequency modula
(FM) halftoning techniques differs from those genera
by conventional halftoning techniques. Some judge
conventional halftoning techniques as superior
smoothly varying tones whereas frequency modula
halftoning techniques excel in heavily textured imag
This paper describes an algorithm that can incorpo
both technologies simultaneously. The technique is
iterative optimization of the binary halftone image w
respect to the differences between the original and
halftoned images. The performance of the algorithm
be controlled by the nature of the original state of 
iteration. The algorithm can in effect accommodate 
type of halftone that can be described by a thresh
matrix.

Introduction

The fact that most printing and display devices are
stricted to black and white pixels, has led to an increa
interest in halftoning techniques, which can be use
transform a graytone image into a binary (halftoned) o
which can be printed or displayed using a two-level 
vice. The simplest technique one can think of is to qu
tities the graytone image with a fixed threshold, wh
in most cases doesn’t lead to a satisfying result. M
different halftoning algorithms have been introduced
literature during the last half a century. All of the fir
introduced algorithms were operating in a pointw
manner, in which each output dot depends only on
input data value at the corresponding location. The e
diffusion algorithm, introduced by Floyd and Steinbe
in 1975,1 on the contrary, requires neighbourhood o
erations and consequently has more computational c
plexity. There are also other types of halftoni
algorithms which process globally, such as neural ne2

the iterative Fourier transform algorithm (IFTA)3 and the
Direct Binary Search.4 Halftoning techniques using pre
computed threshold matrices have an advantage in 
speed of operation while iterative techniques show m
visually pleasing result but have very slow operation
halftoning technique bridging the gap between these
techniques has recently been introduced.5

There are two main screening methods, AM (A
plitude modulated, also called conventional) and 
(Frequency modulated, sometimes referred to as stoc
tic), which can be used to build a halftoned image. In 
conventional method the size of the dots is variable w
their spacing is constant. In the case of FM the siz
the dots is constant whereas their spacing is variab

The algorithm introduced in this paper, which is 
iterative algorithm, can be classified as belonging to
last category, i.e. global processing algorithms, m
tioned above. This algorithm requires a halftoning te
nique which can be described by a threshold matrix. 
goal of this algorithm is to improve the “quality” of th
first halftoned image, that is, to decrease the differe
between the first halftoned image and the original o
With the first halftoned image we mean the grayto
image thresholded with a threshold matrix, that descr
the halftoning technique. Since the FM technology see
to be superior in heavily textured images and the c
ventional technology in images with smoothly varyi
tones we will, by choosing a convenient first thresh
matrix, make the algorithm incorporate both conve
tional and FM halftoning methods, simultaneously. La
in this paper we will show that the implicit update ru
of our algorithm has similarities to the Hopfield upda
rule.6 This allows us to identify a quality function de
scribing the behaviour of the algorithm.

Previous Work

Since the optimization of the Hopfield net can be 
plied to halftoning7 the consideration of using Hopfiel
net has reached high attention during the last years. 
cially it has been investigated by Tuttaß and Bryngda8

and recently by Österberg.10

If the weights tij in a Hopfield net fulfill the constraints

tij  = tji  and tii  = 0 for i = 1,..., N and j = 1,..., M

the Hopfield net minimizes the so-called energy fun
tion E(n), which is
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where yi and ci denote the outputs and the external val
of the Hopfield net, respectively. It has been shown tha

    
t w w c w x wij i n j n i i

n

N
= − =− −

=
∑ and * *

1
(2)

the relation σ2 = 2 · E(n) + const is obtained,8 where,
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capital letters denote the discrete Fourier transform
functions, x and y are the graytone image and its bina
version respectively, Wk is a transfer function of the vi
sual system and finally w*x means the convolution be
tween w and x. Since the Hopfield net minimizes E(n)

minimization of σ2, which is often used as a quality cr
terion for binarization, is obtained. According to Equ
tion 2, the diagonal elements of the weights are

    
t wii i n

n

N
= − −

=
∑ 2

1

and thus the constraint tii = 0 can only be fulfilled for
complex valued elements wi–n. Often w is real valued and
this constraint is not fulfilled and therefore a change
the transfer function W is unavoidable and consequent
the linear relationship between E(n) and σ2 is destroyed
and σ2 does not longer decrease monotonously. Ne
theless, acceptable results can be achieved by term
ing the calculation in a minimum of σ2 and by varying
available parameters (e.g. the width of the filter).
change in the update rule accounting for the effect
nonzero self-coupling connections is proposed in re
ence 10.

The Algorithm and the Effect of
Involved Parameters

The Algorithm
Our algorithm as mentioned before is an iterat

algorithm and can be used for any halftoning techni
that can be described by a threshold matrix. The aim
to decrease the difference between the original ima
i.e. the graytone image, and the first halftoned imag
a low pass region by updating the threshold matrix s
cessively. The algorithm is outlined in Figure 1.

 T +-

LP1

Cost

 

Q

M(k)=M(k-1)+cF(k-1)

g b(k)

F(k)

k=k+1

Stop
Criterion

Yes

+

+
bf = b(k-1) or b (k)

RR(k)
d(k)

Figure 1. Iterative algorithm used for image binarization

Before going into details some definitions must 
introduced. In the following we will denote the grayto
image as g (assume that it is scaled between 0 an
the halftoned image in iteration k as b(k), which is the
original image thresholded with the threshold mat
RR(k), and the final halftoned image as bf. Q denotes a
188—Recent Progress in Digital Halftoning II
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fix threshold matrix by which the halftoning techniqu
can be described. This matrix is the same size as the o
nal image and can be either dependent on or indepen
of it. At the start k is equal to 1 and M(1) is a matrix of zeros
which causes RR(1) to be equal to Q. F(k) denotes the resul
of low-pass filtering the difference between b(k) and g.

The box, named Cost, calculates a cost function
be decreased. For instance d(k) can be the maximum o
the absolute value of F(k), or the sum of the square o
F(k):s elements. If the stop criterion is not fulfilled, th
the threshold matrix is modified to produce a n
halftoned image. Otherwise the algorithm is termina
and the final halftoned image is achieved. Whether 
final halftoned image is the halftoned image in the l
iteration or in the previous one depends on the stop
terion. An example for stop criterion can be d(k) > d(k–1),
that means if the cost in a given iteration k is larger t
the cost in the previous iteration the stop criterion is 
filled. If we use this stop criterion we should make (0)

be larger than d(1) before the stop criterion in the firs
iteration in order to make the algorithm fulfil its firs
iteration and the final halftoned image will be th
halftoned image in the previous iteration. Finally c d
notes a real number which can be constant for all it
tions. How this number c for a decided Q should 
chosen to give the best result is not clear and can 
from one image to another one. By modifying this alg
rithm, as we will see in section 3.3, we can decrease
effect of the choice of c. It must be mentioned that th
is no guaranty that this algorithm minimizes the cos
the difference with all choices of involved paramete
and cost function, but according to our experiment
can decrease the cost with appropriate choices of t
parameters.

As mentioned before the implicit update rule of o
algorithm has similarities to the Hopfield update rule a
consequently we can show that there is a cost func
which our algorithm minimizes. But due to the existen
of non-zero self-coupling terms, i.e. tii mentioned in the
Previous Work section, we have to modify our algorith
in order to find a quality function describing the behaviour
of the modified algorithm. We present this quality fun
tion and the modified algorithm in the appendix.

Different Choices of Q
The behaviour of the final halftoned image var

with different choices of Q and thus Q plays an imp
tant role in our algorithm. In the following paragrap
we explain how we find a convenient Q describing 
FM halftoning technique and later in the Examples s
tion we will show some binary images produced by 
ing the algorithm and this Q. In the section on Hyb
Halftoning, we explain how we can find a convenien
in order to make the algorithm incorporate AM and F
halftoning techniques simultaneously. Two halfton
images produced by using this Q are also shown in
Examples section.

Our Choice of Q Describing the FM Halftoning
Technique

Our aim of choosing a convenient first thresho
matrix describing the FM halftoning technique is 
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achieve a final halftoned image which has a good c
trast by edges, i.e. in the high pass region. Therefo
has to possess information about high frequency de
of the original image. Figure 2 shows a diagram of h
we choose such a convenient Q.

 LP2 + +x

x

+
-

αβ

Random matrix

g Ql h

Figure 2. An example for choosing a convenient first thre
old matrix describing the FM halftoning technique.

The LP filter, i.e. LP2 in Figure 2, can be the sa
filter as before, i.e. LP1 in Figure 1. h possesses in
mation of the original image in high frequencies. E
cept the LP filter there are two other parameters, a
b, which can influence the properties of Q. The large
is, the more the final image is affected of high freque
informations. The average of the elements of the 
dom matrix, which is the same size as g and consis
random numbers between –0.5 and 0.5, should be 
The elements of this random matrix could for exam
have a blue noise distribution. At the last step l is ad
to the result in order to make Q has the same dc lev
g. In the Examples section some halftoned images
shown in order to illustrate how different choices oα
and β affect the behaviour of the final image.

Hybrid Halftoning
The quality of skin tone rendering of halftoned im

ages generated by frequency modulated (FM) halfton
techniques differs from those generated by conventio
halftoning techniques. Some judge the conventio
halftoning techniques as superior in smoothly vary
tones whereas frequency modulated halftoning te
niques excel in heavily textured images.

Suppose that the threshold matrices by which
can describe the conventional and FM halftoning te
niques are S and R, respectively. In order to make
algorithm incorporate both techniques simultaneously
choose Q to be equal to S in regions where

    
    
Q

R
Smn

mn mn

mn mn
=

=
=





,
,

For those m and n for which H
For those m and n for which H

1
0 (3)

the original image’s, i.e. g’s, tones vary smoothly.
other regions of the original image Q is to be equal to
Figure 3 shows an example to find a mask that is 
regions of g where the tones vary smoothly and 1 ot
wise. The box named T denotes the threshold opera
which thresholds all elements in h with the real cons
d. By changing d we can change the properties of H,
consequently Q. An appropriate matrix describing 
FM halftoning technique, i.e. the matrix R, can be t
presented in the FM Halftoning Technique section.
Equation 3 the subscript mn for all matrices means th
location (m, n) in the corresponding matrix.
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Figure 3. A method that generates a mask, which is 0 in
gions of the original image where the tones vary smoothly 
1 otherwise.

Since H consists of only 0 and 1, Q has sharp ed
in regions where its pixel values change from the pi
values of R to S and vice versa. To decrease this e
we first let H pass through a LP-filter and then 
normalisation we make its value lie between 0 and
Suppose that the result after normalisation is denote
N. Now we calculate Q by the following equation:

           Q = R • N + S • (O – N) (4)

where • denotes pointwise multiplication of matrices a
O is a matrix of ones with the same size as the o
matrices in Equation 4. A halftoned image produced
using such a first threshold matrix, i.e. Q, is shown
the Examples section.

A Suggestion for Improvement of the Algorithm
Figure 4 shows a modified version of the algorith

shown in Figure 1. Besides the variables described
fore there are two new variables introduced, i and I. T
variable i is an integer that is set to zero at the start. 
variable I is also an integer, with the help of which 
can stop our algorithm when a satisfying result
reached.

 T ++-

LP1

Cost
Stop

 

+
Q

g

k=k+1

No

 i < I

 
i=i+1

 change c

Yes

Criterion

Yes

b(k)

No, bf = b(k-1) or b(k)

d(k)

F(k)RR(k)

M( k )=M( k - 1 )+cF( k - 1 )

Figure 4. The Modified algorithm.

The advantage of the modified algorithm is that 
can now change c after the best result with the prev
choice of c is reached. After changing c, for example
multiplying it by a positive real number less than on
the algorithm continues as before until the best re
for this c is reached and so on.
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rati
Figure 5. a) The first halftoned image (The original image thresholded with 0.5). b) The final halftoned image after 19 iteons.

(a) (b)
tessella-
Figure 6. a) The first halftoned image (The original image thresholded with a threshold matrix generated by Recursive 
tion with 5 levels of gray). b) The final halftoned image after 10 iterations.

(a) (b)
 figure 2
Figure 7. a) The threshold halftoned image. b) The final halftoned image. Q is computed according to the diagram in
with a = 1 and b = 0.18.

(a) (b)
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2 with a
Figure 8. a) The first halftoned image. b) The final halftoned image. Q is computed according to the diagram in figure 
= 0.18 and b = 0.5.
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Examples

In this section we will show some halftoned images p
duced by using our algorithm introduced in the Alg
rithm section with different choices of Q and oth
involved parameters. In all of these examples the or
nal image is a graytone image of 2562 pixels, the stop
criterion is d(k) > d(k-1) and the cost function is the max
mum of the absolute value of F(k). The elements of ran
dom matrices are supposed to be uniformly distribu

First, to show the efficiency of this algorithm tw
examples are given. In the first example we choose 
be a matrix of 0.5. Figures 5a and 5b show the first 
the final halftoned image generated by using this Q,
spectively. In the second example we choose Q to 
threshold matrix generated by recursive tessellation 
5 levels of gray.9 The first and the final halftoned imag
produced by using this Q are shown in Figures 6a 
6b, respectively.

Second, to show how our choice of Q, describ
the FM halftoning technique, and the different choi
of α and β can affect the first and consequently the fi
halftoned image two examples are introduced as follo
In the first example Q is computed by taking α and β to
be 1 and 0.18, respectively. The first and the fi
halftoned images generated by this choice of parame
are shown in Figures 7a and 7b, respectively. In the 
ond example the value of a is decreased to 0.18 w
the value of β is increased to 0.5. The generated halfto
images using these values are shown in Figure 8
comparing figures 7b and 8b we can see how diffe
values of α and β can change the appearance of the fi
halftoned image.

Finally to show how our choice of Q presented
subsection 3.2.2 can affect the final halftoned image
figures are shown below. In Figure 9, Q is a matrix o
describing the AM halftoning technique and in Figu
-
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10, Q is computed according to the method illustrated
Figure 3 with d = 0.001 and Equation 4. The matrix d
scribing the FM halftoning technique, which is a part 
Q used in Figure 10, is exactly the same as that use
Figure 8.

Appendix:

According to the algorithm outlined in figure 1 we ca
write the following statements in iteration k + 1:

b(k + 1) = st(g – RR(k + 1)) (5)

where st is the threshold function, i.e. st(x) = 1 if x 0,
and st(x) = 0 if x ≤ 0. Since

    
RR Q M M c Fk k k i

i

k
( ) ( ), ( ) ( )+ + +

=
= + = ∑1 1 1

1

(note that M(1) is a matrix of zeros) and F(i) = CONV(b(i) – g,
filter) (that is Fi is b(i) – g convoluted with LP1’s filter
kernel, named filter, and is the same size as b(i) – g) we
can rewrite Equation 5 as follows:

    
    
b st g Q c CONV b g filterk i

i

k
( ) ( ) ,+

=
= − − −( )



∑1

1
(6)

By expanding the summation in Equation 6, b(k + 1)

can be rewritten as:

   b(k + 1) = st(CONV(b(k), – c · filter) + S) (7)

where is independent of b(k) and can be written as:

S = g – Q + c · CONV(g, filter)

   
    
− −( )

=

−

∑c CONV b g filteri

i

k
( ) ,

1

1

   = CONV(CONV(g — Q, invfilter), c · filter)
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hnique.
Figure 9. a) The first halftoned image. b) The final halftoned image. Q is a matrix describing the AM halftoning tec

(a) (b)
rated in
Figure 10. a) The first halftoned image. b) The final halftoned image. Q is computed according to the method illust
figure 3 with d = 0.001 and Equation 4.
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=

−

∑CONV g c filter CONV b g c filteri

i

k
( , ) ( , )( )

1

1

    
= − + − − ⋅





=

−

∑CONV CONV g Q invfilter g b g c filteri

i

k
( , ) ( ,( )

1

1

  (8)

= CONV([...], c · filter) (9)

where we have suppressed the expression inside
square brackets, used the distributive property of 
convolution and expressed g – Q as:

g – Q = CONV(CONV(g – Q, invfilter), c · filter), with
circular convolution and the filter kernel invfilter defined
by:

    
invfilter

c filter
and=

⋅






⋅−F
F

F F1 11
( )

_
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he
e

and denote the Fourier transform and the inverse F
rier transform, respectively. It will be shown that for pi
els in the interior of the image and with appropria
connection weights and constant term, the implicit 
date rule (Equation 7) has indeed the same form as
standard Hopfield rule.10 With the necessary changes d
to the existence of nonzero self-coupling terms, we w
below identify the following quality function describ
ing the behaviour of the modified algorithm (see Figu
11) in the kth iteration:

    

Qual b CONV b H

CONV CONV g Q invfilter

g b g H

k

x f

N f

y f

N f
k

x y

i

k
i

x y

x

x x

y

y y

( ) ( , )

( , )

,

( ) ( )
( , )

( )

( , )

= (

− −



+ − −( ) 







=

−

=

−

=

−

∑ ∑

∑
0

1
2 (10)
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For Qual(b(k)) to be a valid quality function the fo
lowing connection between the filter kernel filter and
the filter kernel H in Equation 10 must be establishe

          c filter CONV H H full⋅ = ( , ˜ ," " ) (11)

where     H̃  is the 180º clockwise rotation of H, or equiv
lent:     H̃ (a,b) = H (–a, –b). Equation 11 implies: filter(a,b)
= filter(–a, –b). Furthermore the sizes must conform, i
if the size of H is 2 · fx + 1 × 2 · fy + 1, where we denot
the upper-left most, the central and the lower-right m
entry by H(–fx, –fy), H(0, 0) and (fx, fy) respectively, then
the size of filter must be 4 · fx + 1 × 4 · fy + 1, with the
upper-left most, the central and the lower-right m
entry denoted by filter (–2fx, –2fy), filter (0, 0) and
filter(2fx, 2fy) respectively. This is exactly what “full” in
Equation 11 indicates. It is also assumed that the siz
g and consequently b(k) is Nx × Ny.

 
T ++

-

LP1

Cost1
Stop

 

g b(1)

No

Criterion

Q

1

Cost2
Stop

Criterion
2

 New update rule

 i=i+1

 

+

 k=k+1

 i=1

 

Yes

No

-

+

M(k)=M(k-1)+cF(k-1)

Yes

b f = b(k-1) or b(k)

F(k)

d (k)

b(k)

b (k) = b n
(i-1) or b n

(i)

d1
(i)

bn
(i)

Figure 11. The modified algorithm.

Now we rewrite Equation 10 as:

    

Qual b CONV b H

CONV b H CONV H

k

x f

N f

y f

N f
k

x y

x f

N f

y f

N f
k

x y
x y

x f y f

N f N

x

x x

y

y y

x

x x

y

y y

x y

x x

( ) ( , )

( , ) ... ,

( ) ( )
( , )

( )
( , )

( , )

( ) ( )

( ,

= (

− ⋅ [ ]( )

+

=

−

=

−

=

−
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−

− = −

−

∑ ∑

∑ ∑

2

2

yy yf

X Y
CONV H

−

∑ ( )
)

( , )
([...],

where we again have suppressed the expression i
square brackets. The suppressed expression is inde
:

.

st

t

 of

the
en-

dent of b(k) and thus the third term is constant. The s
ond term can be rewritten as:

    
− ⋅

=

−

=

−

= − −

+ − + −

∑ ∑ ∑2
m f

N f

n f

N f

x y m f f n f f

m f N f n f N f

x

x x

y

y y

x x y y

x x x y y y

b
k

m n
( )

( , ) ( , ) (max{ , },max{ ( , )})

(min({ , },min{ , }))

      (CONV([...], H)(x,y)•H(x – m, y–n)) (13)

    

− ⋅

= − ⋅

=

−

=

−

=

−

=

−

∑ ∑

∑ ∑

2

2

m f

N f

n f

N f

m f

N f

n f

N f

mn ij m n
k

m n

x

x x

y

y y

x

x x

y

y y

b
k

m n
CONV CONV H H full m n

W b S

( )
( , )

( [...], ( , ˜ ," " )))( , )

, ( , )
( )

( , )

where the last equality is given by Equation 9 and Eq
tion 11. The local field     

˜ ,( )hm
k for pixels (m, n) in the interior

of the image and including the self-coupling term is giv
by:10

    

˜ ( , ˜ )( )

( , ) ( )

( , )

, ( , )
( )

( , )
( )

( , )h W b S CONV b W Smn
k

i j f f

N f N f

mn ij m n
k

m n
k

m n
x y

x x y y

= + = +
=

− −

∑

(15)
where Wmn, ij denote the connection weights. Now if w
have W = -CONV(H,     H̃ ,“ full”) = –c • filter, and thus
    W̃ =W, then Equation 15 can be written as:     

˜ ( )hmn
k  =

CONV(b(k), – c • filter) + S(m, n). Comparing this equation
with the implicit update rule in Equation 7 we will hav

    
    
b st hm n

k
mn
k

( , )
( ) ( )˜+ = ( )1 2 (16)

which for pixels in the interior of the image, has the sa
form as the standard Hopfield update rule. Due to 
existence of nonzero self-coupling connections, this 
date rule will not minimize the quality function in Equ
tion 10. Since Wmn, mn = W0, 0 = – c · filter(0, 0) the local
field acting in the (m, n) pixel without the effect of self-
coupling connection is given by:

           h h c filter bmn
k

m
k

mn
k( ) ( ) ( )˜ ( , )= + ⋅ ⋅0 0 (17)

The new update rule is:10

    b st h W st h c filterm n
k

mn
k

mn mn mn
k

( , )
( ) ( )

,
( )( ) ( ( ( , )))+ = + = − ⋅1 2 2 0 0      (18)

Using Equation 17 and Equation 18 the new upd
rule can be rewritten as:

    b st h c filter b c filterm n
k

mn
k

m n
k

( , )
( ) ( )

( , )
( )( ˜ ( , ) ( ( , )))+ = + ⋅ ⋅ − ⋅1 2 2 0 0 0 0 (19)

Using Equation 5 we can see that g – RR(k + 1) = g – Q
– M(k + 1) is equal to     

˜ .( )hmn
k  This leads to the following up

date rule:

b(k + 1) = st(2g + 2c · filter(0, 0) · b(k) – 2Q –
2M(k + 1) – (c · filter(0, 0))) (20)

The new image update rule implicates some chan
in the algorithm. These changes are outlined in Fig
11. In the modified algorithm we also include the chan

(14)
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needed in order to update the pixels more than once
fore we change quality function. The function Cost2
used to terminate the pixel updating and d1

(i) can for ex-
ample be a function of the quality function presented
Equation 10. The function Cost1 and the stop criterio
can be as before. The box called “New update rule” p
duces a halftoned image according to Equation 20.
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