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Abstract (Frequency modulated, sometimes referred to as stochas-
tic), which can be used to build a halftoned image. In the
The rendering quality in halftoning is a critical issue.conventional method the size of the dots is variable while
The quality aspects are more important in some imagé$eir spacing is constant. In the case of FM the size of
than in others. The quality of skin tone rendering ofthe dots is constant whereas their spacing is variable.
halftoned images generated by frequency modulated The algorithm introduced in this paper, which is an
(FM) halftoning techniques differs from those generatedterative algorithm, can be classified as belonging to the
by conventional halftoning techniques. Some judge théast category, i.e. global processing algorithms, men-
conventional halftoning techniques as superior intioned above. This algorithm requires a halftoning tech-
smoothly varying tones whereas frequency modulatedique which can be described by a threshold matrix. The
halftoning techniques excel in heavily textured imagesgoal of this algorithm is to improve the “quality” of the
This paper describes an algorithm that can incorporatfrst halftoned image, that is, to decrease the difference
both technologies simultaneously. The technique is abetween the first halftoned image and the original one.
iterative optimization of the binary halftone image with With the first halftoned image we mean the graytone
respect to the differences between the original and thienage thresholded with a threshold matrix, that describes
halftoned images. The performance of the algorithm cathe halftoning technique. Since the FM technology seems
be controlled by the nature of the original state of théo be superior in heavily textured images and the con-
iteration. The algorithm can in effect accommodate anyentional technology in images with smoothly varying
type of halftone that can be described by a thresholtbnes we will, by choosing a convenient first threshold
matrix. matrix, make the algorithm incorporate both conven-
tional and FM halftoning methods, simultaneously. Later
Introduction in this paper we will show that the implicit update rule
of our algorithm has similarities to the Hopfield update
The fact that most printing and display devices are rerule? This allows us to identify a quality function de-
stricted to black and white pixels, has led to an increasestribing the behaviour of the algorithm.
interest in halftoning techniques, which can be used to
transform a graytone image into a binary (halftoned) one, Previous Work
which can be printed or displayed using a two-level de-
vice. The simplest technique one can think of is to quanSince the optimization of the Hopfield net can be ap-
tities the graytone image with a fixed threshold, whichplied to halftoningthe consideration of using Hopfield
in most cases doesn’t lead to a satisfying result. Manyet has reached high attention during the last years. Spe-
different halftoning algorithms have been introduced incially it has been investigated by Tuttal? and Bryngdahl
literature during the last half a century. All of the first and recently by Osterbetg.
introduced algorithms were operating in a pointwise  If the weightg; in a Hopfield net fulfill the constraints
manner, in which each output dot depends only on the
input data value at the corresponding location. The error  t; =t; andt, =0 fori=1,...Nandj=1,....M
diffusion algorithm, introduced by Floyd and Steinberg
in 19751 on the contrary, requires neighbourhood op-the Hopfield net minimizes the so-called energy func-
erations and consequently has more computational conion E™, which is
plexity. There are also other types of halftoning
algorithms which process globally, such as neural hets,
the iterative Fourier transform algorithm (IFFANd the
Direct Binary SearchHalftoning techniques using pre-
computed threshold matrices have an advantage in theiherey, andc, denote the outputs and the external values
speed of operation while iterative techniques show moref the Hopfield net, respectively. It has been shown that if
visually pleasing result but have very slow operation. A
halftoning technique bridging the gap between these two
techniques has recently been introduted.
There are two main screening methods, AM (Am-
plitude modulated, also called conventional) and FMhe relationo? = 2 -E®™ + constis obtained, where,
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N fix threshold matrix by which the halftoning technique
o? = Z|(Xk - Yk)WkL can be described. This matrix is the same size as the origi-
5| nal image and can be either dependent on or independent
o?f it. At the start k is equal to 1 and*Ms a matrix of zeros
which causes RRto be equal to Q.#denotes the result
of low-pass filtering the difference betweef bnd g.

The box, named Cost, calculates a cost function to
be decreased. For instanc® dan be the maximum of
the absolute value of or the sum of the square of
F®:s elements. If the stop criterion is not fulfilled, then
the threshold matrix is modified to produce a new
halftoned image. Otherwise the algorithm is terminated

Ny, and the final halftoned image is achieved. Whether the

Ly = ‘Zwi—n final halftoned image is the halftoned image in the last

e iteration or in the previous one depends on the stop cri-
and thus the constraimt = 0 can only be fulfilled for terion. An example for stop criterion can be g d«9,
complex valued elementg . Oftenw s real valued and that means if the cost in a given iteration k is larger than
this constraint is not fulfilled and therefore a change othe cost in the previous iteration the stop criterion is ful-
the transfer functiolVis unavoidable and consequently filled. If we use this stop criterion we should make d
the linear relationship betweds? ando? is destroyed be larger than @ before the stop criterion in the first
andao? does not longer decrease monotonously. Neveriteration in order to make the algorithm fulfil its first
theless, acceptable results can be achieved by terminateration and the final halftoned image will be the
ing the calculation in a minimum @ and by varying halftoned image in the previous iteration. Finally ¢ de-
available parameters (e.g. the width of the filter). Anotes a real number which can be constant for all itera-
change in the update rule accounting for the effects afons. How this number ¢ for a decided Q should be
nonzero self-coupling connections is proposed in referehosen to give the best result is not clear and can vary

capital letters denote the discrete Fourier transform
functions,x andy are the graytone image and its binary
version respectively, is a transfer function of the vi-
sual system and finallw*x means the convolution be-
tweenw andx. Since the Hopfield net minimizes»
minimization ofa?, which is often used as a quality cri-
terion for binarization, is obtained. According to Equa-
tion 2, the diagonal elements of the weights are

ence 10. from one image to another one. By modifying this algo-
rithm, as we will see in section 3.3, we can decrease the
The Algorithm and the Effect of effect of the choice of c. It must be mentioned that there
Involved Parameters is no guaranty that this algorithm minimizes the cost of
the difference with all choices of involved parameters
The Algorithm and cost function, but according to our experiments it

Our algorithm as mentioned before is an iterativecan decrease the cost with appropriate choices of these

algorithm and can be used for any halftoning techniqu@arameters.

that can be described by a threshold matrix. The aim is As mentioned before the implicit update rule of our

to decrease the difference between the original imagealgorithm has similarities to the Hopfield update rule and

i.e. the graytone image, and the first halftoned image iconsequently we can show that there is a cost function

a low pass region by updating the threshold matrix sucwhich our algorithm minimizes. But due to the existence

cessively. The algorithm is outlined in Figure 1. of non-zero self-coupling terms, i.e.mentioned in the
Previous Work section, we have to modify our algorithm
in order to find a quality function describing thehaviour

b +é>

of the modified algorithm. We present this quality func-
tion and the modified algorithm in the appendix.

Y

LP1

Different Choices of Q
The behaviour of the final halftoned image varies
with different choices of Q and thus Q plays an impor-
tant role in our algorithm. In the following paragraph,
we explain how we find a convenient Q describing the
FM halftoning technique and later in the Examples sec-
tion we will show some binary images produced by us-
MEO=M k-D+cF-D) k=k+1 ing the algorithm and this Q. In the section on Hybrid
Halftoning, we explain how we can find a convenient Q
Figure 1. Iterative algorithm used for image binarization. in order to make the algorithm incorporate AM and FM
halftoning techniques simultaneously. Two halftoned
images produced by using this Q are also shown in the
Before going into details some definitions must beExamples section.
introduced. In the following we will denote the graytone
image as g (assume that it is scaled between 0 and Dur Choice of Q Describing the FM Halftoning
the halftoned image in iteration k a®,bwhich is the Technique
original image thresholded with the threshold matrix ~ Our aim of choosing a convenient first threshold
RR®, and the final halftoned image as ® denotes a matrix describing the FM halftoning technique is to

RW

K
F( Cost
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achieve a final halftoned image which has a good con-

trast by edges, i.e. in the high pass region. Therefore Q LP3 ! .() h. T i‘
has to possess information about high frequency details h
of the original image. Figure 2 shows a diagram of how +d

we choose such a convenient Q.
Figure 3. A method that generates a mask, which is 0 in re-

gions of the original image where the tones vary smoothly and
g ot h Q .
LP2) 1 otherwise.

ok,
Random matrix Since H consists of only 0 and 1, Q has sharp edges

in regions where its pixel values change from the pixel
Figure 2. An example for choosing a convenient first threshvalues of R to S and vice versa. To decrease this effect
old matrix describing the FM halftoning technique. we first let H pass through a LP-filter and then by
normalisation we make its value lie between 0 and 1.
Suppose that the result after normalisation is denoted by
The LP filter, i.e. LP2 in Figure 2, can be the same\. Now we calculate Q by the following equation:
filter as before, i.e. LP1 in Figure 1. h possesses infor-
mation of the original image in high frequencies. Ex- Q=R*N+S«(O-N 4)
cept the LP filter there are two other parameters, a and
b, which can influence the properties of Q. The larger avhere « denotes pointwise multiplication of matrices and
is, the more the final image is affected of high frequencyD is a matrix of ones with the same size as the other
informations. The average of the elements of the ranmatrices in Equation 4. A halftoned image produced by
dom matrix, which is the same size as g and consists ofsing such a first threshold matrix, i.e. Q, is shown in
random numbers between —-0.5 and 0.5, should be zerthe Examples section.
The elements of this random matrix could for example
have a blue noise distribution. At the last step | is added Suggestion for Improvement of the Algorithm
to the result in order to make Q has the same dc level as Figure 4 shows a modified version of the algorithm
g. In the Examples section some halftoned images arghown in Figure 1. Besides the variables described be-
shown in order to illustrate how different choicesoof fore there are two new variables introduced, i and I. The

andp affect the behaviour of the final image. variable i is an integer that is set to zero at the start. The
variable | is also an integer, with the help of which we
Hybrid Halftoning can stop our algorithm when a satisfying result is

The quality of skin tone rendering of halftoned im- reached.
ages generated by frequency modulated (FM) halftoning
techniques differs from those generated by conventional

= p&D or p®
halftoning techniques. Some judge the conventional No, by =b7 "orp

halftoning techniques as superior in smoothly varying 2 \)Yes
tones whereas frequency modulated halftoning tech-
niques excel in heavily textured images.
Suppose that the threshold matrices by which we ol [T Mt —
can describe the conventional and FM halftoning tech-
niques are S and R, respectively. In order to make our Yes
algorithm incorporate both techniques simultaneously we LPY
choose Q to be equal to S in regions where RRK) 0 d® Stop
Q ost Criterion,
_[OR,,,, Forthosemandn for whichH, , =1 -
@ = 'un»> For those m and n for whichH,,, =0 ©) L ?
M (ki (K- Rep(k-1) k=k+1
the original image’s, i.e. g's, tones vary smoothly. In
other regions of the original image Q is to be equal to R.

Figure 3 shows an example to find a mask that is 0 in

regions of g where the tones vary smoothly and 1 other- Figure 4. The Modified algorithm.

wise. The box named T denotes the threshold operation

which thresholds all elements in h with the real constant

d. By changing d we can change the properties of H, and The advantage of the modified algorithm is that we
consequently Q. An appropriate matrix describing thecan now change c after the best result with the previous
FM halftoning technique, i.e. the matrix R, can be thathoice of c is reached. After changing c, for example by
presented in the FM Halftoning Technique section. Inmultiplying it by a positive real number less than one,
Equation 3 the subscripanfor all matrices means the the algorithm continues as before until the best result
location (, n) in the corresponding matrix. for this c is reached and so on.
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(a) (b)
Figure 6. a) The first halftoned image (The original image thresholded with a threshold matrix generated by Recursive tessella-
tion with 5 levels of gray). b) The final halftoned image after 10 iterations.

Figure 7. a) The threshold halftoned image. b) The final halftoned image. Q is computed according to the diagram in figure 2
with a=1and b =0.18.
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(b)
Figure 8. a) The first halftoned image. b) The final halftoned image. Q is computed according to the diagram in figure 2 with a
=0.18 and b = 0.5.

Examples 10, Q is computed according to the method illustrated in
Figure 3 with d = 0.001 and Equation 4. The matrix de-
In this section we will show some halftoned images proscribing the FM halftoning technique, which is a part of
duced by using our algorithm introduced in the Algo-Q used in Figure 10, is exactly the same as that used in
rithm section with different choices of Q and otherFigure 8.
involved parameters. In all of these examples the origi-
nal image is a graytone image of 256xels, the stop Appendix:
criterion is & > d*9 and the cost function is the maxi-
mum of the absolute value ofFThe elements of ran- According to the algorithm outlined in figure 1 we can
dom matrices are supposed to be uniformly distributedwrite the following statements in iteration k + 1:
First, to show the efficiency of this algorithm two
examples are given. In the first example we choose Q to b+ = st(g — RRx* V) (5)
be a matrix of 0.5. Figures 5a and 5b show the first and
the final halftoned image generated by using this Q, rewherest is the threshold function, i.est(x) = 1 if x 0,
spectively. In the second example we choose Q to beandst(x) = 0 if x< 0. Since
threshold matrix generated by recursive tessellation with \
5 levels of gray.The first and the final halftoned image (h+D) _ (ht1), pp(ktD) _ @)
produced by using this Q are shown in Figures 6a and RE =Q+M M _ci:le
6b, respectively.
Second, to show how our choice of Q, describingnote thaM® is a matrix of zeros) arfel) = CONVb® —g,
the FM halftoning technique, and the different choicedilter) (that isF' is b® — g convoluted with LP1's filter
of a andf can affect the first and consequently the finalkernel, namedilter, and is the same size b8 — g) we
halftoned image two examples are introduced as followscan rewrite Equation 5 as follows:
In the first example Q is computed by takimgndf3 to
be 1 and 0.18, respectively. The first and the final ey _ O k @ . \O
halftoned images generated by this choice of parameters b = St%’ -Q _C;CONV(I’ 8 ﬁlter)H (6)
are shown in Figures 7a and 7b, respectively. In the sec- .
ond example the value of a is decreased to 0.18 while By expanding the summation in Equationb8, v
the value of} is increased to 0.5. The generated halftoned¢an be rewritten as:
images using these values are shown in Figure 8. By 1 :
comparing figures 7b and 8b we can see how different b= SYCONMb®Y, —c -filter) + 5 @
values ofa andp can change the appearance of the finalvhere is independent & and can be written as:

halftoned image. _ _ .
Finally to show how our choice of Q presented in S=g-Q+c- CONY, filter)

subsection 3.2.2 can affect the final halftoned image two = W _ g
figures are shown below. In Figure 9, Q is a matrix only ci:leONV(b & ﬁlter)
describing the AM halftoning technique and in Figure = CONVCONMg — Q, invfilte}, ¢ - filtep
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Figure 10. a) The first halftoned image. b) The final halftoned image. Q is computed according to the method illustrated in
figure 3 with d = 0.001 and Equation 4.

ot and denote the Fourier transform and the inverse Fou-
+CONV (g, c filter) - zCONV(b(i) - g, c filter) rier transform, respectively. It will be shown that for pix-
= els in the interior of the image and with appropriate
. connection weights and constant term, the implicit up-
:CONVSf’ONV(g—Q,invﬁlter)+g— SV -g.c D‘ilterg 8) date rule (Equation 7) has indeed the same form as the
=1 standard Hopfield rul&®With the necessary changes due
to the existence of nonzero self-coupling terms, we will
= CONV]...], c - filten) (9) below identify the following quality function describ-
ing the behaviour of the modified algorithm (see Figure
where we have suppressed the expression inside tld) in thek®" iteration:
square brackets, used the distributive property of the N~f. N,

convolution and expressegd— Qas: Qual(®™®) = z A(CONV(Z,%),H)WJ)
x=f, ¥y=fy
g — Q= CONMCONMg - Q, invfilted, c - filter), with 0
circular convolution and the filter kernialfilter defined -CONVE CONV(g - Q,inuvfilter)
by: (10)
- f
invfilter = F_IE| L DD?’ and F-! t8- kzl (bm - g),HD
E(c D"ilter)% =0 HWE
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For Qual(b®) to be a valid quality function the fol- dent ofb® and thus the third term is constant. The sec-
lowing connection between the filter kerrfdter and  ond term can be rewritten as:
the filter kernel H in Equation 10 must be established:
N.-f. N,-f, (k) (min({m+f,,N,~f, },min{n+f, ,N —f,})

. _ o e g -2 b

¢ ilter =CONV(H, H," full") (11) izt o7, (MN) g =maxim—£, T maxin=(7, £,
where H is the 180° clockwise rotation of H, or equiva-
lent: H (a,b) =H (-a, —-B. Equation 11 impliedilter(a,b) (CONME...1, H)(x.Y)=Hee ) (13)
=filter(-a, —B. Furthermore the sizes must conform, i.e.
if the size ofHis 2 -f,+ 1x 2 -f, + 1, where we denote Nof Ny hy  (R)
the upper-left most, the central and the lower-right most2 > >
entry byH(—f,, —f), H(0, 0) and {,, f,) respectively, then m=h n7ls
the size offilter must be 4 f,+ 1x 4 -f, + 1, with the ~ _ """ o o (14)
upper-left most, the central and the lower-right most 2 Woun b BBiomm

entry denoted by filter (42 -2f), filter(0, 0) and where the last e G ;
. . ? . quality is given by Equation 9 and Equa-
filter (21, 2,) respectively. This is exactly whaulll” in ipn 11. The local fieldx”, for pixels (n, r) in the interior

X . . .t
Equation 11 mdlcates_. It is also assumed that the size %Ethe image and including the self-coupling term is given
g and consequentlg® is N, x N,. by:10

[{CONVTI...], CONV(H,ﬁ, "full")))(m,n)
(m,n)

m=f, n=f,

. (N.~f.,N,~f,) 7
=S Wbl + Sy = CONVE® )+ 5,0,

Dy - mn,ij~(m,n)
9yl b () GHTES)

(15)
by =b*Yor b® whereW,,, ; denote the connection weights. Now if we
Ves have W = CONMH, H ,“full”) = — . filter, and thus

© W =W, then Equation 15 can be written ag}) =
d® /Stop CONMb®, —c- filter) + S, ,- Comparing this equation
,@ Costl Crit(larlon with the implicit update rule in Equation 7 we will have:
A

° bl = st(2ish) (16)
k=k+1

b

which for pixels in the interior of the image, has the same
b®=b, (Dor b0 * form as the standard Hopfield update rule. Due to the
existence of nonzero self-coupling connections, this up-
M K= (D) date rule will not minimize the quality function in Equa-
tion 10. SinceV,,, ..=W, , = —c - filter(0, 0) the local

field acting in the ifh, N pixel without the effect of self-
i=1 coupling connection is given by:

R® = B® + ¢ [filter(0,0) ") (17)

New update rule

Vb

i=i+1

The new update rule i8:

[0)

BV = st2h™® + W, ) =st(2hE) - (c (filter(0,0)))  (18)

(m,n) — mn,mn

Using Equation 17 and Equation 18 the new update

Figure 11. The modified algorithm. rule can be rewritten as:

Now we rewrite Equation 10 as: ~
b = st(2hP) + 2¢ [filter(0,0) Y | - (c (filter(0,0))) (19)

(m,n) (m,n)

N.~f. Ny=f, 2
(k)Y — (k)
Qualb™) = Z y:zf (CONV(b »H) Using Equation 5 we can see thgat RR*9=g - Q
N’_f N""_fv —M&*2 s equal top® This leads to the following up-
25 S CONVO™, HyeynCONV(.]H) ~ daterule:
x=f, ¥=f, ?
(N,~f,N,~f,) bk+1 = st(2g + 2c - filter(0, 0) -b® — 2Q —
* 3 (CONV(L.LH)yy, 2M+ - (c - filter(0, 0))) (20)
(=FI=y-£,)

The new image update rule implicates some changes
where we again have suppressed the expression in tirethe algorithm. These changes are outlined in Figure
square brackets. The suppressed expression is indepdr-. In the modified algorithm we also include the changes
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needed in order to update the pixels more than once bé-

fore we change quality function. The function Cost2 is

used to terminate the pixel updating an@ can for ex-

ample be a function of the quality function presented in
Equation 10. The function Costl1 and the stop criterion 1
can be as before. The box called “New update rule” pros.

duces a halftoned image according to Equation 20.
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